
EFM32 Series 0: Debugging and Programming
1 0 D E C E M B E R 2 0 1 3

EFM32 Debug Interface

SWD = ARM Serial Wire Debug Interface

 Only two pins required:
SWDIO + SWCLK

 Optional pin:
SWO

 No JTAG

 No Boundary Scan

 Connected to core
through AHB-AP

 Further reading: AN0062

2

EFM32 Debug Pin-out

 SEGGER UM0001 J-Link/J-Trace User Guide:

 Standard debug connectors

3

SWD Protocol

4

SWD Select Register

 APSEL selects active AP

 Only APSEL = 0 is used on EFM32

 Normally AHB-AP (unless chip is locked)

 APBANKSEL selects current active bank

 16 possible banks

 Each AP bank has 4 active registers

 Total 16 * 4 = 64 registers allowed per AP

5

AHB-AP

 Responsible for accessing internal memory map

 Read operation

 Write address to TAR

 Read DRW

 Write operation

 Write address to TAR

 Write data to DRW

6

Debug Lock

 Prevents access to firmware through debug port

 Debug Lock = Disable connection between Debug Port and core

 When device comes out of reset:

 1. SWD-DP connected to AAP

 2. SWD-DP reads lock word in AAP

 3a. If unlocked: AAP opens connection to AHB-AP

 3b. If locked: AHB-AP access not open. DP can only access AAP

 AAP – Authentication Access Port

 Main capability: Mass Erase – erases flash, SRAM and lock bits.
Mass Erase does NOT erase User Data Page

7

AAP – Programmers Model

 When ‘Debug Lock’ is enabled, AAP is accessed instead of AHB-AP (on AP #0)

 Debugger can verify Locked status by reading IDR

 AHB-AP: IDR = 0x24770011

 AAP: IDR = 0x16E60001

 In J-Link Commander:

NB: Only on
M3/M4!

8

AAP – On M0+ (ZG)

 On ZG AHB-AP is always available and AAP is mapped to internal address 0xF0E00000

 When locked, only AAP is accessible by AHB-AP

 When unlocked AAP is not accessible

9

Set Debug Lock

 Debug Lock is enabled by clearing Debug Lock Word (DLW)

 DLW is part of Lock Bits (LB) Flash page

 Debug Lock is not enforced until after a hard reset

 Pin reset or power cycle

 Watchdog reset also works since it reset the debug interface

 Software reset (NVIC_SystemReset()) is not enough!

10

Debug Unlock

 Unlock sequence

 Write 0xCFACC118 to AAP_CMDKEY

 Write 1 to the DEVICEERASE bit of AAP_CMD

11

AAP Reset Window

Extension sequence

Not available
on Gecko

12

Recover Bricked Device

 How to “brick” an EFM32:

 Intentionally: Lock debug interface

 Unintentionally:

 Disable HF clock

 Disable debug pins

 Reconfigure debug pins

 Enter EM4

 If this is done early in code, the debugger don’t have time to halt the CPU before the debug interface is disabled!

 Debug Unlock feature

 Mass erase

 Remember: User Data Page is not erased

 Commander unlock sequence is timing critical – be aware of long wires

 All EFM32 kits can unlock any EFM32 device.

 No known 3rd party debuggers implement Debug Unlock

 Currently ZG can not be unlocked by any EFM32 kit. Use AN0062 instead. Will be fixed by firmware update soon.

13

Debug Modules

 FPB - Flash Patch and Breakpoint unit

 Breakpoints and code patches

 8 HW breakpoints

 DWT - Data Watch point and Trace unit

 Watchpoints, trigger resources and system profiling

 4 configurable comparators: hardware watchpoint, ETM trigger, PC sampler trigger, data address event trigger

 Counters: clock cycles, folded instructions, LSU, sleep cycles, CPI, interrupt overhead

 Periodic PC sample output (used in energyAware Profiler)

 ITM – Instrumentation Trace Macrocell (except ZG/M0+)

 Application-driven trace

 Trace sources:

 Software trace

 Hardware trace

 Time stamping

 ITM + SWO = Serial Wire Viewer (SWV)

 ETM – Embedded Trace Macrocell (GG, LG, WG only)

 Instruction and data trace in real-time

 5 extra pins: Trace CLK + Data [3:0]

 Note – FPGA bug on DK, can’t be used

14

Factory programmed boot loader

 Factory-programmed boot loader:

 Two versions of the boot loader exist:

 UART(non-USB parts)

 Special version for part with few pins (no UARTn)

 UART and USB (all USB parts)

 Commands:

 Upload

 Destructive upload (overwrites boot loader itself)

 Write data to User Data page

 Write Lock Bits page (write/erase protect flash pages)

 Verify upload and flash contents

 Boot application

 Reset device

 Lock debug interface

15

How to invoke the USART boot loader

Step-by-step guide for EFM32GG-DK3750:

1. Use energyAware Commander to download the boot
loader binary from AN0003

2. Connect the USB UART cable to the UART pins on the
prototyping board. Connect:

1. P6.13 (PE10, EFM32 Tx) <--> Yellow (USB Rx)

2. P6.14 (PE11, EFM32 Rx) <--> Orange (USB Tx)

3. Pull SWCLK high. SWCLK can be found on the prototyping
board P8.3 (PF0)

4. While pulling SWCLK high, press the reset button on the
MCU board

5. In your terminal emulator, transmit the auto-baud
synchronization character 'U' (capital)

Now, you should get the boot loader prompt in the terminal
emulator.

Terminal emulator:

Teraterm

(supports X-MODEM with CRC)

16

How to invoke the USB boot loader

Step-by-step guide for EFM32GG-DK3750:

1. Use energyAware Commander to download the boot
loader binary from AN0042

2. Pull SWCLK high. SWCLK can be found on the prototyping
board P8.3 (PF0).

3. While pulling SWCLK high, press the reset button on the
MCU board

4. First time only: Install USB CDC virtual UART device driver
(EFM32-cdc.inf)

5. Insert micro-USB cable

6. USART mode: Transmit the auto-baud synchronization
character 'U' (capital)
USB mode: Insert USB cable

Now, you should get the boot loader prompt in the terminal
emulator.

17

Creating applications for boot loader

 Default: User application on address 0x0

 Destructive upload: no changes required
(boot loader is overwritten)

 Keep boot loader: User application linked to run
from 0x800 / 0x1000 / 0x4000

 Boot loader size:

 2 kB: ZG, TG, G

 4 kB: LG, GG, WG

 16 kB: LG, GG, WG with USB

 Instructions in app. notes

 IAR: Linker files included in AN

 Keil MDK-ARM: Change project settings

 GCC: Edit linkerfile

 IAR debug: Set position of vector table in code:
SCB->VTOR = 0x800;

User
application

Boot loader 0x800

0x800 / 0x1000

18

Boot Loader Documentation

 Pre-programmed boot loaders documentation:

 AN0003 UART Boot Loader

 AN0042 USB-UART Boot Loader

 Note: Boot loaders difficult to compile

 Boot loader software examples:

 AN 0060 AES Boot Loader

 Loads an AES encrypted firmware

 Backup image – verify new image

 AN0052 USB MSD Host Boot Loader

 Loads firmware from USB Mass Storage Device (memory stick)

19

Debug printf()

 MCU – no standard output for printf()

 Simplicity: Code to retarget printf() output to USART provided

 Easy to use:

 Add retarget source code to build:

 <energymicro>\kits\common\drivers\retargetserial.c

 <energymicro>\kits\common\drivers\retargetio.c

 Include
 retargetserial.h

 stdio.h

 Call RETARGET_SerialInit()

 Use printf() to print text to USART

 Note: printf() is a very versatile function – will increase codesize, particularly on GCC.

 GCC: iprintf() (integer support only) reduces codesize

20

Serial Wire Viewer

 SWV feature in ITM allows character output on SWO pin

 energyAware Commander:

 Terminal

 Source code

 ITM_SendChar() = single-character output

 Low energy modes:
EFM32 can power down the debug interface before the ITM character buffer is empty

21

www.silabs.com/efm32

