- 1. キットを購入する
- 2. ユーザーアカウントを作成する
- 3. 開発環境
- 4. デモを見る
Tiny EdgeにおけるAI/MLとは?
IoT業界では、「エッジ」とは、クラウドコンピューティングに依存するのではなく、ローカルで計算を実行するデバイスを指します。最新の開発であるTiny Edgeは、計算を、センサーノードなどのデータが生成される場所に近づけます。このシフトは、一元化されたクラウドベースのソリューションから、ローカルでデータを収集、処理、推論するエッジノードの分散ネットワークへの移行を意味します。2027年までに、TinyMLを搭載したデバイスが30億台以上販売されると予想されています。TinyMLは、AIのサブセットで、Tiny Edgeデバイスに機械学習モデルを展開することに焦点を当てた技術です。この成長は、スピード、プライバシー、接続性に対するニーズなどの社会的トレンドによって促進されています。さらに、有線技術から無線技術への移行により、Tiny Edgeデバイスの採用がさらに加速化しています。
Silicon LabsのSoC を使用した機械学習のアプリケーション
Silicon Labs のワイヤレス SoC は、予知保全および予防保全のためのセンサ信号処理、ヘルスケア向けの生体信号解析、コールドチェーン監視など、さまざまなMLアプリケーションをサポートしています。また、セキュリティ・アプリケーション向けの音声パターン・マッチング、スマート・デバイス制御向けの音声コマンド、人数カウントやプレゼンス検出などのタスク向けの低解像度のビジョンも実現します。SoC は、さまざまなアプリケーション要件に対応するさまざまなRAMサイズを提供します。機械学習モデルは、マイク、カメラ、加速度や温度などの時系列データを測定するセンサーからのデータに適用されます。これらのモデルには、音声パターン・マッチング、ウェイク・ワード/コマンド・ワード検出、指紋読み取り、常時オンのビジョン、画像/オブジェクト分類および検出が含まれます。検出されたイベントは、要件に従ってさらに処理できます。
AI/ML Silicon Labs を活用したジャーニー
Silicon Labs は、プロセスの各ステップを概説し、プロジェクトの各段階でサポートすることにより、AI/ML デバイスの開発を加速します。私たちは、開発プロセスを簡素化し、デバイスを迅速かつ効率的に市場に投入できるようにお手伝いします。
以下は、AI/ML開発者のジャーニーにおける 3 つの重要なステージと、各ステージを首尾よく完了するために必要な事項の概要です。
開始する
独自のソリューションを構築する
事前構築済みソリューション
1. キットを購入する:ハードウェアと例
Silicon Labs は、超低コストのスモール・フォーム・ファクタから、堅牢なネットワーク向けのコンパクトな機能満載のプラットフォームまでを対象に、さまざまな開発キットとエクスプローラキットを提供しています。ウェイクワード検出、Pacman、ジェスチャー制御など、エキサイティングなデモがいくつかあります。これらの豊富な機能を持つキットは、複数のプロトコルをサポートし、さまざまなメモリ構成で提供され、迅速なデバッグとプロトタイピングを可能にする多様なセンサーや周辺機器が搭載されています。関心のあるデモに基づいて、以下のニーズに最も適したキットを選択してください。デモはハードウェアに依存しません。
![]() |
![]() |
![]() |
![]() |
|
キット | EFR32xG24 開発キット | EFR32xG28 エクスプローラー・キット | EFR32xG26 +10 dBm 開発キット |
SiWx917 Wi-Fi 6 & Bluetooth LE開発キット |
OPN | (xG24-DK2601B) | (xG28-EK2705A) | (xG26-DK2608A) | (SiWx917-DK2605A) |
サポートされる プロトコル |
Bluetooth、Matter、独自規格、Thread、Zigbee | Bluetooth、Sidewalk、Wi-SUN、Z-Wave | Bluetooth、Matter、独自規格、Thread、Zigbee | Bluetooth、Wi-Fi |
説明 | EFR32xG24 開発キットは、コンパクトで機能満載の開発プラットフォームです。これは、ワイヤレス IoT 製品の開発とプロトタイプ作成の最速パスを提供します。 | EFR32xG28 Explorer キットは、スモール・フォーム・ファクタの開発および評価用プラットフォームで、Sub-GHzおよびBluetooth LE向けのIoTアプリケーションの迅速なプロトタイピングとコンセプトの作成に焦点を当てたEFR32xG28SoCをベースにしています。 | EFR32xG26-DK2608A 開発キットは、コンパクトで機能満載の開発プラットフォームです。これは、ワイヤレス IoT 製品の開発とプロトタイプ作成の最速パスを提供します。 | SiWx917 Wi-Fi 6および Bluetooth LE 5.4 開発キットは、ワイヤレス IoT アプリケーションのテスト、開発、プロトタイピングを迅速に行うためのコンパクトでありながら機能満載の開発プラットフォームです。 |
価格 | $79 米ドル | $34 米ドル | $89 米ドル | $40 USD *アルファ段階でML対応営業担当者に連絡する |
Flash/RAM | 1536 kB / 256 kB | 512 kB / 32 kB | 3.2 MB/512kB | 8 MB フラッシュ / 8 MB 外部PSRAM |
MVP | ✔ | ✔ | ✔ | ✔ |
センサー | 慣性センサー、ステレオマイクロホン、圧力センサー、照度センサー | 温度センサー | 慣性センサー、ステレオマイクロホン、圧力センサー、照度センサー | 温度センサー、湿度センサー、慣性センサー、デジタルマイク、照度センサー |
2. ユーザーアカウントを作成する
開発キットをお待ちの間、ユーザーアカウントを設定することをお勧めします。
Silicon Labs のアカウント:
Silicon Labs のアカウント:このアカウントでは、開発者コミュニティ、入門ガイド、プライベート GitHub リポジトリ、Simplicity Studio 開発環境にアクセスできます。アカウントを作成するか、ここでアカウントへのアクセスを確認できます。
3. 開発環境の設定
開発環境の選択には多くの選択肢があることは承知していますが、Simplicity Studio は Bluetooth を使用してデバイスを開発するのに最適な選択肢だと考えています。その理由は:
- プログラマとデバッガ機能を搭載しているため、手動セットアップの心配がありません。
- 購入済みのボードを認識し、使用できるサンプルアプリを特定します。
環境の設定にヘルプが必要ですか?スタートガイドをお使いいただければすぐに起動して実行できます。
Simplicity Studio の完全オンライン インストーラーをダウンロードする
システム要件
Windows | Windows 10(64 ビット) Windows 11 |
MacOS | 10.14 Mojave 10.15 Catalina* 11.x Big Sur* 12.x Monterey* * Keil 8051 または IAR ツールチェーンご使用する場合は、こちらをクリックしてください |
Linux | Ubuntu 20.24 LTS |
CPU | 1 GHz 以上 |
メモリ | 1 GB RAM(ワイヤレス・プロトコル開発には、8 GB を推奨) |
ディスク空き容量 | 最低限の FFD インストール用の 600 MB ディスクスペース ワイヤレス・ダイナミックプロトコルのサポートには 7 GB |
4. デモを見る
以下は、最小限のコーディングで簡単に実現できる追加のアイデアのリストです。以下に提案するように、参照されているアプリケーション例を修正します。これらのユースケースは、すぐに使えるデモとしてではなく、さらなる評価のための完璧なコンテキストを提供します。
事前に構築されたアプリケーションを10分ですぐに起動して実行できます。
トレーニングを受けたモデルから
30分でMLアプリケーションを作成する方法を学習します。
追加デモ
アプリケーション開発をゼロから開始するのは簡単なことではありません。当社のSimplicity SDKには、最も頻繁に使用されるケースをカバーする多数の組み込みデモとサンプルが含まれています。
Pac-Man
Go(進め)、Left(左)、Right(右)、Up(上)、Down(下)、Stop(止まれ)という音声によるキーワードを使って、人気のPac-Manゲームをプレイしましょう。アプリケーションはキーワード検出を使用します。基板は、Simplicity Studio を使用して制御できます。デモはSimplicity Studioの一部としても利用できます。
推奨キット:
音声分類機能
このアプリケーションは、マイクロコントローラ用の TensorFlow Lite を使用して、Micrium OS カーネルタスクでマイクに記録された音声データを分類します。この分類は、基板上のLEDを制御するために使用されます。デモは Simplicity Studioの一部としても利用できます。
推奨キット:
Magic Wand
このアプリケーションは、加速度計でさまざまな手のジェスチャーを認識するように訓練されたモデルを示しています。検出されたジェスチャーは、シリアルポートに印刷されます。デモは Simplicity Studioの一部としても利用できます。
推奨キット:
Blink
このアプリケーションは、正弦関数を再現するようにトレーニングされたモデルを示しています。モデルは 0~ 2pi の範囲の値が継続的に入力され、モデルの出力を使用してLEDの強度を制御します。デモはSimplicity Studio の一部としても利用できます。
推奨キット:
1. モデルを構築
すでに.tfliteファイルの準備ができていますか?次のステップに進む:「テストと検証」
モデルをトレーニングし、展開可能な形式に変換する準備をします。
ML開発に精通している場合は、以下のステップに従ってください。
カスタマイズされたコード
まず、AI/MLモデルを設計し、トレーニングします。これには、データの収集と前処理、適切なモデルの選択、トレーニングパラメータの設定が含まれます。
ゼロからモデル構築を支援するために、コマンドラインユーティリティやスクリプトを使って独自のモデルの構築をサポートするPythonパッケージを提供しています。
機械学習モデルの構築支援については、TensorFlow のドキュメントを参照してください。モデルを .tflite に変換するためのサポートについては、LiteRT のドキュメントを参照してください。
事前に構築された機械学習ソリューションをお探しの場合は、最後のタブ「事前構築済みソリューション」に移動してください。
2. テストと検証する
組み込みターゲットに対するモデルのパフォーマンスを評価し、必要なパフォーマンス指標を満たしていることを確認するためにモデルを検証します。
オプションのツール:MLTKモデルプロファイラー
MLTKモデルプロファイラーは、モデルが組み込みターゲットでどれだけ効率的に実行されるかに関する情報を提供します。モデルプロファイラーを使用すると、シミュレータまたは組み込まれた物理的なターゲットで.tfliteモデルファイルを実行できます。
注:このツールはオプションで、Silicon Labs ではまだ正式にサポートされていません。
3. モデルを展開する
検証済みのモデルを組み込みデバイスに統合して展開します。
- AI/ML SDK 拡張機能を追加する
- StudioでTensorFlow Microコンポーネントを設定する:コンポーネントを設定して、組み込みデバイスに適したカーネルを選択します
- モデルを含め、実行する:.tflite モデルをアプリケーションにコピーし、Simplicityプロジェクトのconfigフォルダーに格納します。
- 後処理の実施:モデルの出力を処理するために必要な後処理ステップを追加し、それをアプリケーションのロジックと統合します。
ターンキーソリューション
開発プロセスを簡素化し製品化までの時間を短縮する、Silicon Labs SoC 向けに事前構築済みのすぐに展開可能なAI/MLソリューション。
設計パートナー
Silicon Labs は、カスタマイズされたAI/MLソリューションの設計と開発を支援するために、以下のサードパーティのAI/ML設計サービス会社を事前審査し、認定しています。
開始する
1. キットを購入する
2. ユーザーアカウントを作成する
3. 開発環境
4. デモを見る
独自のソリューションを構築する
1. モデルを構築
2. テストと検証する
モデルを展開する
事前構築済みソリューション
パートナー